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Nilai Awal Peringkat Pertama Secara Berangka) 
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ABSTRACT

Exponentially-fitted numerical methods are appealing because L-stability is guaranteed when solving initial value 
problems of the form  Such numerical methods also yield the exact solution when solving 
the above-mentioned problem. Whilst rational methods have been well established in the past decades, most of them are 
not ‘completely’ exponentially-fitted. Recently, a class of one-step exponential-rational methods (ERMs) was discovered. 
Analyses showed that all ERMs are exponentially-fitted, hence implying L-stability. Several numerical experiments showed 
that ERMs are more accurate than existing rational methods in solving general initial value problem. However, ERMs have 
two weaknesses: every ERM is non-uniquely defined and may return complex values. Therefore, the purpose of this study 
was to modify the original ERMs so that these weaknesses will be  overcome. This study discusses the generalizations 
of the modified ERMs and the theoretical analyses involved such as consistency, stability and convergence. Numerical 
experiments showed that the modified ERMs and the original ERMs are found to have comparable accuracy; hence modified 
ERMs are preferable to original ERMs.

Keywords: Exponential function; initial value problem; modified exponential-rational method; problem whose solution 
possesses singularity; rational function

ABSTRAK

Kaedah berangka yang bersesuaian secara eksponen adalah menarik kerana kestabilan L adalah terjamin apabila 
menyelesaikan masalah nilai awal yang berbentuk  Kaedah berangka yang sedemikian juga 
menghasilkan penyelesaian tepat apabila menyelesaikan masalah yang dinyatakan sebelum ini. Walaupun kaedah nisbah 
telah menjadi mantap dalam beberapa dekad yang lalu, sebahagian besar daripada kaedah ini tidak bersesuaian secara 
eksponen sepenuhnya. Baru-baru ini, suatu kelas kaedah eksponen-nisbah satu-langkah (ERM) telah ditemui. Beberapa 
analisis menunjukkan bahawa semua ERM adalah bersesuaian secara eksponen, maka mengimplikasikan kestabilan L. 
Beberapa pengujian berangka menunjukkan bahawa ERM adalah lebih tepat berbanding dengan kaedah nisbah yang 
sedia ada dalam menyelesaikan masalah nilai awal umum. Walau bagaimanapun, ERM mempunyai dua kelemahan: 
setiap ERM tidak ditakrifkan secara unik dan boleh mengembalikan nilai-nilai yang kompleks. Oleh itu, tujuan kajian 
ini adalah untuk mengubah suai ERM yang asal supaya kelemahan tersebut dapat diatasi. Kajian ini membincangkan 
pengitlakan bagi ERM yang diubah suai dan analisis teori yang terlibat seperti kekonsistenan, kestabilan dan penumpuan. 
Pengujian secara berangka menunjukkan bahawa ERM yang telah diubah suai dan ERM yang asal didapati mempunyai 
ketepatan yang setara; maka ERM yang diubah suai lebih sesuai berbanding dengan ERM yang asal.

Kata kunci: Fungsi eksponen; fungsi nisbah; kaedah eksponen-nisbah diubah suai; masalah dengan penyelasaian yang 
mempunyai ketunggalan; masalah nilai awal

INTRODUCTION

We consider the numerical solution of the initial value 
problem

	 y'(x) = f (x, y),  y(a) = η.	  (1)

	 If the solution of (1) is known to be periodic or 
oscillate with a known frequency, then a numerical 
integration formulae based on trigonometric functions 
is appropriate (Lambert 1973). On the other hand, if the 
solution of (1) possesses singularities, then a numerical 

integration formulae based on rational functions will 
be much more effective. In both cases, unconventional 
methods are preferable as they adapt to the structure or 
to the solution of the problem better than conventional 
methods. Unconventional methods are special numerical 
methods which are developed to solve certain types of 
initial value problems, where in the main, conventional 
methods such as linear multistep methods and Runge-
Kutta methods will perform poorly. Besides incorporating 
trigonometric functions and rational functions as non-
polynomial interpolants to form new special methods, 
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other commonly used non-polynomial interpolants are 
logarithmic and exponential functions.
	 Among the special numerical methods based on 
non-polynomial interpolants mentioned above, we are 
particularly attracted to special numerical methods based 
on rational functions. We refer to these kind of methods 
as rational methods. For excellent surveys and various 
perspectives on rational methods, refer to Fatunla (1982, 
1986), Ikhile (2004, 2002, 2001), Lambert (1974), Lambert 
and Shaw (1965), Luke et al. (1975), Okosun & Ademiluyi 
(2007a, 2007b), Ramos (2007), Teh et al. (2011, 2009), 
Teh & Yaacob (2013a, 2013b), van Niekerk (1988, 1987), 
Wambecq (1976) and Yaacob et al. (2010).
	 All the works mentioned have discussed various 
formulations of one-step rational methods as well as 
some rational methods in a multistep setting that are 
based on various forms of rational interpolants. These 
rational interpolants possess either both numerator and 
denominator being polynomial expressions or only one of 
them is a polynomial expression. However, Teh and Yaacob 
(2013b) suggested that the incorporation of exponential 
function into conventional rational function to form a new 
kind of rational interpolant in developing a rational method 
with special properties. The resulting methods are rational 
methods that are exponentially-fitted because they yield 
exact solutions when solving the problem

	 	 (2)

	 These exponentially-fitted methods are known as one-
step exponential-rational methods (ERMs), which suggest 
an approximation to the theoretical solution of (1) at xn+1 
is given by

	 	 (3) 

where b, c1, c2 and aj for j = 0, 1, …, k are parameters that 
may contain y(xn) and higher derivatives of y(xn). Note 
that aj = 0

 
if k is set to 0. If an ERM has order p, then this 

particular ERM is called a p-ERM. Teh and Yaacob (2013b) 
developed ERMs of order orders 3 and 4,  together with their 
respective local truncation errors and stability functions. 
Stability analyses had showed that all ERMs developed are 
L-stable. Furthermore, all ERMs proposed were compared 
numerically with those existing rational methods in the 
articles mentioned above, using some test problems. 
Numerical results showed that almost all ERMs gave more 
accurate numerical solutions in solving (1).
	 Despite the strong stability characteristics and better 
accuracies of ERMs in (3), there are two shortcomings of 
ERMs. Firstly, there are actually two different ERMs for 
each order of accuracy due to the fact that two different 
expressions of c2 emerged during the derivation process 
(Teh & Yaacob 2013b). In other words, a p-th order ERM is 
not unique but two different methods. At this moment, no 

criterion or condition has been devised to determine which 
ERM is better for the same order of accuracy. Secondly, the 
parameter c2 of each ERM in (3) may contain an expression 
with square root. In other words, there are times where 
ERM will produce numerical solutions that are complex 
numbers due to the square root evaluations of the parameter 
c2. In order to retrieve numerical solutions that are only 
real numbers, Teh and Yaacob (2013b) chose to consider 
the real parts of the resulting complex values and ignored 
the imaginary parts of the complex values that were found 
numerically to be very small. However, by ignoring the 
imaginary parts of the complex values will somehow affect 
the degree of accuracy of the numerical solutions. These 
two disadvantages of ERM become the main rationales 
of this study, where we wish to modify the original ERM 
in (3), so that the newly modified ERMs are free from 
the two defects mentioned before. The developments 
and implementations of the new modified ERMs will be 
presented in the following sections.

PRELIMINARIES

We are considering the initial value problem in (1), where 
y, , and  f (x, y) is assumed to 
satisfy all the conditions in order that (1) has a unique 
solution. The interval [a, b] is divided into a number of 
subintervals [xn, xn+1] with x0 = a and xn = x0 +nh, such that 
h is the step-size. Suppose that we have solved numerically 
the initial value problem in (1) up to a point xn and have 
obtained a value yn as an approximation of y(xn), which 
is the theoretical solution of (1). From Lambert (1991, 
1973), assuming the localizing assumption that no previous 
truncation errors have been made, i.e. yn = y(xn), we are 
interested in obtaining yn + 1 as the approximation of  y(xn+1).
For that purpose, we suggest an approximation to the 
theoretical solution y(xn+1) of (1) given by

	 	 (4)

where b, c and aj for j  = 0, 1, …, k are parameters that 
may contain y(xn) and higher derivatives of y(xn) and h 
is the step-size. In view of this, these parameters have to 
be determined during the derivation process. The value k 
presented in (4) decides the number of derivatives to be 
evaluated in (4) i.e. a total of y(m)(xn) for m = 1, 2, …, k + 2. 
The higher the value of k, the more derivatives evaluations 
need to be carried out.
	 Formula (4) is the modified version of the original 
exponential-rational method shown in (3). One has noticed 
that the exponential functions in both (3) and (4) are 
different. The exponential function ec2h from (3) is replaced 
by the exponential function  as shown in (4). This 
replacement was motivated by the work of Wu and Xia 
(2001) who suggested the exponential function  and 
used it to develop a one-step explicit numerical method for 
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the numerical solution of (1). Satisfying numerical results 
were reported in Wu and Xia (2001).
	 We regard (4) as one-step modified exponential-
rational method, or in brief as MERM. If a MERM has order 
p, then this particular MERM is called a p-MERM. With the 
p-MERM in (4), we associate a difference operator L defined 
by

	 	 (5)

where y(x) is an arbitrary function, continuously 
differentiable on . Expanding y(x + h) 
and exponential function ehy'(x)/y(x) as Taylor series and 
collecting terms in (5) gives the following general 
expression:

	 L[y(x);h]p-MERM = C0h
0 + C1h

1 + … + Ckh
k 

		  + Ck+1h
k+1 + Ck+2 h

k+2 + ….	 (6)

	 We note that Ci, i = 0, 1, 2, … in (6) contains 
corresponding parameters that need to be determined in the 
derivation processes. To facilitate the derivation of MERM, 
the order and local truncation error of p-MERM are defined 
as follows.

Definition 1 The difference operator (5) and the 
associated modified exponential-rational method (4) is 
said to be of order  p = k + 2 if, in (6), C0 = C1 = C2 = … 
= Ck+2 = 0, Ck+3 ≠ 0  for k = 0, 1, 2, … . 

Definition 2 The local truncation error at xn +1 of (4) is 
defined to be the expression L [y(xn); h]p-MERM given by (5), 
when y(xn) is the theoretical solution of the initial value 
problem (1) at a point xn. The local truncation error of 
(4) is then

	 L[y(xn);h]p-MERM = Ck+3h
k+3 + O(hk+4).		  (7)

From Definition 1, it is important to note that

	 k = p – 2,	 (8)

since we are going to use this expression in the remainder 
of this paper.

DERIVATION OF ONE-STEP MODIFIED EXPONENTIAL-
RATIONAL METHOD

The derivation of one-step MERM is all about finding the 
unknown coefficients (parameters) b, c and aj for j = 0, 1, 
…, k in formula (4). First, we must determine the desired 
order accuracy by setting an arbitrary value for p. Then, 
the value of k can be obtained once the arbitrary value 
of p is determined using (8). Next, from (5), we have 
to expand y(x + h) and ehy'(x)/y(x) as Taylor series and also 

expand the polynomial  up to degree k. After that, 
we must arrange the expanded (5) until (6) is achieved. 
Upon comparison between the expanded (5) and (6), we 
can identify the expressions which correspond to C0, C1, 
…, C1+2 and C1+3. Finally, with C0 = C1 = … = C1+2 = 0, and 
taking y(x) as the theoretical solution of the initial value 
problem (1) i.e. y(x) = y(xn), we can obtain a system of k 
+ 2 simultaneous equations as shown next.

   

=

p!(yn)
p

	 (9)

    

	 The system of equations in (9) is used to determine 
the unknown coefficients b, c and aj for j  = 0, 1, …, k. 
These coefficients, in fact, facilitate a generalization 
of MERMs of arbitrary order p. In other words, the 
coefficients can be computed once the desired order of 
accuracy (p) is determined. On solving the system (9) for 
the unknown coefficients b, c and aj for j  = 0, 1, …, k  
using MATHEMATICA 8.0 software, we obtain the following 
generalized formulae:

	

(10)

	
	

	

	
(11)
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	 (12)

and

	 	

	 (13)

where yn = y(xn) and   = y(m)(xn) for j = 1, 2, …, k, p = k 
+ 2 and m = 1, 2, …, p by the localizing assumption. We 
note that formulae (4) and (10) – (13) are valid provided 
that yn = y(xn) ≠ 0. 

LOCAL TRUNCATION ERROR OF MODIFIED EXPONENTIAL-
RATIONAL METHOD

In the process of identifying the expressions which 
correspond to C0, C1, …, C1+2 and C1+3 and taking y(x) as 
the theoretical solution of the initial value problem (1) i.e.  
y(x) = y(xn), 

we found that

	 	 (14)

for arbitrary value of p (or arbitrary value of k). Therefore, 
from Definition 2, the local truncation error (in brief as 
LTE) of a p-MERM (4) is given by

	 LTEp-MERM = 

	 (15)

where yn = y(xn), y'n = y'(xn),  = y(p)(xn) and  = y(p+1)(xn) 
by the localizing assumption. We note that the LTE formula 
(15) is valid provided that yn = y(xn) ≠ 0. The parameters b 
and c in formula (15) are determined from formulae (12) 
and (13), respectively.

ABSOLUTE STABILITY ANALYSIS OF MODIFIED 
EXPONENTIAL-RATIONAL METHOD

The absolute stability analysis of a p-MERM can be obtained 
easily by applying the formulae (4) and (10) – (13) to the 
Dahlquist’s test problem in (2). It can be shown that, the 
application of a p-MERM (4) to the Dahlquist’s test problem 
resulted in the following difference equation:

	 yn+1 = R(z)yn, z = hλ.	  (16)

	 We note that R(z) is the stability function of a p-MERM. 
Clearly yn  0 as n  ∞ if and only if

	 ⎜R(z)⎜ < 1.	  (17)

	 A p-MERM is absolutely stable for those values of z for 
which the condition in (17) holds. The region of absolute 
stability of a p-MERM is defined as {z ∈:⎜R(z)⎜≤1} 
or the set of points in the complex plane such that the 
approximated solution remains bounded after many steps 
of integrations (Butcher 2008).
	 On applying the Dahlquist’s test, (2) to formulae 
(10) – (13) and simplifying them using MATHEMATICA 8.0 
software, we arrive at the following results:
								      
	 {a0 = 0, aj = 0, b = 0, c = yn}.	 (18)

	 Then, apply the test (2) to formula (4) and also 
substitute the results in (18) into formula (4) to yield the 
following:

	 	 (19)

If we let z = hλ in (19), then we obtain

	 yn+1 = ezyn,

and according to (16), the stability function of p-MERM is

	 R(z) = ez.	  (20)

In other words, the stability function of MERM for any order 
of accuracy is always the function given in (20). On setting 
z = x + iy, we obtain the region of absolute stability of a 
p-MERM as shown in Figure 1.

FIGURE 1. Region of absolute stability of a p-MERM

	 The shaded region in Figure 1 is the region of absolute 
stability of a p-MERM, where the condition ⎜R(z)⎜≤1 is 
satisfied. From Figure 1, we can see that the region of 
absolute stability of a p-MERM contains the whole left-
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hand half plane, which show that any p-th order MERM is 
A-stable. In addition, on using MATHEMATICA 8.0, we have 
found out that ⎜R(z)⎜0 as Re(z)  –∞. This shows that 
any p-th order MERM is also L-stable.

CONSISTENCY AND CONVERGENCE ANALYSES OF 
MODIFIED EXPONENTIAL-RATIONAL METHOD

We now show that any p-th order MERM is consistent with 
the differential in (1) by the following definition.

Definition 3 The MERM (4) is said to be consistent if (7) 
satisfy

	 	 (21)

	 From Definition 2,    is essentially the 
local truncation error for a p-MERM. It can be shown that 
the local truncation error for any p-th order MERM satisfy 
the condition in (21), which directly implies any p-th 
order MERM is consistent with the differential in (1). The 
following is a proof which shows that the local truncation 
error for any p-th order MERM does satisfy the condition 
in (21):

	

	

Lastly, according to Fatunla (1988), the convergence 
of a p-MERM can be verified, since its application to the 
Dahlquist’s test, (2) results in the following difference 
equation:

	 yn = (ehλ)n y0.	 (22)

	 We note that (22) is derived from (19). From (22), 
since  (ehλ)n  0 as n  ∞

 
for all hλ with Re(λ) < 0, we 

have yn  0 as n  ∞ which, in the limit, does satisfy,

	 	 (23)
	

	 This is because the theoretical solution of test (2) also 
behaves like y(xn)  0 as n  ∞. In other words, both yn 
and y(xn) approach zero as n approaches infinity.

NUMERICAL EXPERIMENTS AND COMPARISONS

According to Teh and Yaacob (2013b), rational methods 
suggested by Ikhile (2001), Lambert and Shaw (1965), Teh 
and Yaacob (2013b) and van Niekerk (1988, 1987) face no  

difficulty in solving initial value problem (1) whose initial 
condition y(a) = η = 0. As for the MERMs given by formula 
(4), it is very obvious that a p-th order MERM is not designed 
to solve initial value problem with initial condition zero 
because the exponential function will be undefined.
	 We choose to compare the third order MERM with 
existing third order rational methods from Ikhile (2001), 
Lambert and Shaw (1965), Teh and Yaacob (2013b) and 
van Niekerk (1988, 1987). Third order rational methods 
are chosen due to simplicity, the requirement of less 
evaluations of higher derivatives and less computational 
time. Some test problems are used to check the accuracy 
of these third order rational methods with different number 
of integration steps. We present the maximum absolute 
relative errors over the integration interval given by 

where N is the number of integration steps. 
We note that y(xn) and yn  represents the theoretical solution 
and numerical solution of a test problem at point xn.
	 We present the third order rational methods that are 
involved in the following numerical experimentation 
and comparisons. Firstly, the new third order MERM, or 
3-MERM:

	 	  (24)

with

	

	 The third order rational method by Lambert and Shaw 
(1965) is given by

	 yn+1 = yn + hy'n +  	 (25)

	 The third order rational methods by van Niekerk 
(1988, 1987) are given by

	 	  (26)
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and

	 	  (27)

respectively. From formulae (25) and (27), we note that the 
third order rational methods of Lambert and Shaw (1965) 
and van Niekerk (1988) are identical. The third order 
rational methods from Ikhile (2001) is given by

	 	 (28)

	 Lastly, the two third order exponential-rational 
methods (ERMs) from Teh and Yaacob (2013b) denoted 
by 3-ERM(1) and 3-ERM(2) are:

	 	 (29)

with

	

and

	 	 (30)

with

	

	

respectively. We note that

	

Problem 1

	 y'(x) = –2y(x) + 4x, y(0) = 3, x ∈ [0,0.5].

The theoretical solution is y(x) = 4e–2x – 1 + 2x.

Problem 2 (Fatunla 1982)

	 y'(x) = –2000e–200x + 9e–x + xe–x, y(0) = 10, x ∈ [0,10].

The theoretical solution is y(x).

Problem 3 (Ramos 2007)

	 y'1(x) = –1002y1(x) + 1000y2(x)2, y1(0) = 1, x ∈ [0,1];

	 y’2(x) = y1(x) – y2(x)(1+y2(x)), y2(0) = 1, x ∈ [0,1];

The theoretical solutions are y1(x) = e–2x  and y2(x) = e–x.

Problem 4 (Yaakub & Evans 2003)

	 y"(x) + 101y'(x) + 100y(x) = 0, y(0) = 1.01, 

	 y'(0) = -2, x ∈[0,10].

	 The theoretical solution is y(x) = e-2x and y2(x) = 
e-x. Problem 4 can be reduced to a system of first order 
differential equations, i.e.

	 y'1(x) = y2(x), y1(0) = 1.01, x ∈ [0, 10];

	 y’2(x) = –100y1(x) – 1.01y2, y2(0) = –2, x ∈ [0, 10].

	 The theoretical solutions are y1(x) = 0.01e–100x + e–x 
and y2(x) = –e–100x – e–x.

Problem 5 (Ramos 2007)

	 y'(x) = 1 + y(x)2, y(0) = 1, x ∈ [0, 0.8].

	 The theoretical solution is y(x) = tan(x + π/4). Problem 
5 is an example of problem whose solution possesses 
singularity. From the theoretical solution, notice that the 
solution becomes unbounded in the neighbourhood of the 
singularity at x = π/4 ≈ 0.785398163367448.
	 From Table 1, we can see that the third order rational 
method of Ikhile (2001) and van Niekerk (1987) generated 
the least accurate numerical results, while the remaining 
third order rational methods by Lambert and Shaw (1965) 
and van Niekerk (1988) are found to have comparable 
accuracy in solving Problem 1. Our new 3-MERM turned 
out to have better accuracy compared with other existing 
third order rational methods. The third order methods 
3-ERM(1) and 3-ERM(2) are unable to return any result 
because this problem causes the expressions c2 in (29) and 
(30) to become undefined.

Problem 2 is indeed a very stiff, non-autonomous problem. 
From Table 2, we can see that 3-MERM and 3-ERM(1) 
generated results that are comparable in accuracy for  N = 
10000 and N = 100000 in solving Problem 2, followed by 
3-ERM(2). Third order rational methods by Ikhile (2001), 
Lambert and Shaw (1965) and van Niekerk (1988, 1987) 
are found to have comparable accuracy for N = 1000, 10000 
and 100000, except for Ikhile (2001) which converged 
slowly to the exact solution for N = 100000.

Problem 3 is a stiff system, but less ‘stiffer’ than Problem 
2. From Tables 3 and 4, we can see that 3-ERM(1) generated 
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satisfying results for N = 160  compared to other third 
order rational methods. In view of this, we can say that 
3-ERM(1) has potential to achieve high accuracy with a 
smaller number of integration steps. 3-MERM and 3-ERM(2) 
are only found to have comparable accuracy for N = 320 
and N = 640. Numerical results generated by the third 
order rational methods of Lambert and Shaw (1965) and 
van Niekerk (1988, 1987) are less satisfying for N = 160 
especially when computing the component y1(x).

Problem 4 is a stiff system arises from the reduction of a 
second order initial value problem to a system of coupled 
first order differential equations. From Table 5, it can be 
seen that 3-MERM, 3-ERM(1), third order rational methods 
of Lambert and Shaw (1965), van Niekerk (1988) and 
Ikhile (2001) are found to have comparable accuracy 
except for N  = 1280. On the other hand, 3-ERM(2) and 
third order method of van Niekerk (1987) are found to 
have comparable accuracy in solving Problem 4 for any 
number of integration steps.
	 Lastly, the results from Table 6 clearly shows that the 
third order rational method of Ikhile (2001) is the most 

suitable method in solving a problem whose solution 
possesses singularity because it yields more accurate 
numerical results. 3-MERM, 3-ERM(2) and the third order 
rational method of van Niekerk (1987) are comparable in 
accuracy; while the third order rational methods of Lambert 
and Shaw (1965) and van Niekerk (1988) are comparable. 
3-ERM(1) returns the least satisfying results among all third 
order rational methods.

CONCLUSION

In this paper, we have presented a new class of modified 
exponential-rational methods (MERMs) which are explicit 
one-step methods that are based on rational functions. The 
general formulation of MERM is given in (4) while the order 
condition and local truncation error for a MERM are explained 
in Definition 1 and Definition 2. The parameters b, c and aj  
for  j = 0, 1, …, k are generalized in which the generalized 
formulae were shown in (10) – (13). On choosing an integer 
of p ≥ 2 (i.e. the order of a MERM), the parameters for a 
specific MERM can be determined and these parameters are 

TABLE 1. Maximum absolute relative errors of various third order methods 
with respect to the number of steps (Problem 1)

N Lambert & 
Shaw (1965)

Van Niekerk 
(1987)

Van Niekerk 
(1988)

Ikhile 
(2001)

3-ERM(1) 3-ERM(2) 3-MERM

16
32
64

5.07503(-06)
6.28976(-07)
7.82908(-08)

3.25864(-04)
2.93414(-05)
3.83339(-06)

5.07503(-06)
6.28976(-07)
7.82908(-08)

5.84945(-05)
7.85013(-06)
1.01742(-06)

-
-
-

-
-
-

4.24138(-07)
5.28343(-08)
6.58942(-09)

TABLE 3. Maximum absolute relative errors of various third order methods with respect to the number of steps (y1(x)) (Problem 3)

N Lambert & 
Shaw (1965)

Van Niekerk 
(1987)

Van Niekerk 
(1988)

Ikhile 
(2001)

3-ERM(1) 3-ERM(2) 3-MERM

160
320
640

2.19212(+02)
2.90442(-05)
2.01537(-11)

3.17981(-01)
3.84679(-05)
2.01373(-11)

2.19212(+02)
2.90442(-05)
2.01537(-11)

8.23205(-03)
1.34220(-03)
4.49640(-15)

5.19877(-05)
1.99991(-06)
4.21885(-15)

3.96606(+01)
3.28414(-06)
4.10783(-15)

2.64155(+00)
8.10996(-06)
4.05231(-15)

TABLE 2. Maximum absolute relative errors of various third order methods with respect to the number of steps (Problem 2)

N Lambert & 
Shaw (1965)

Van Niekerk 
(1987)

Van Niekerk 
(1988)

Ikhile 
(2001)

3-ERM(1) 3-ERM(2) 3-MERM

100
1000

10000
100000

7.08987(+01)
7.48249(-01)
1.06282(-03)
1.10728(-06)

1.51505(+00)
3.57558(-01)
1.44188(-03)
1.89317(-06)

7.08987(+01)
7.48249(-01)
1.06282(-03)
1.10728(-06)

4.71235(+00)
6.24419(-02)
1.34363(-03)
1.44295(-05)

8.05125(-01)
2.36491(-02)
2.76633(-05)
2.86579(-08)

8.05075(-01)
1.43271(-01)
1.93116(-04)
6.40614(-07)

2.51013(-02)
8.52263(-03)
2.67342(-05)
3.33494(-08)

TABLE 4. Maximum absolute relative errors of various third order methods with respect to the number of steps (y2(x)) (Problem 3)

N Lambert & 
Shaw (1965)

Van Niekerk 
(1987)

Van Niekerk 
(1988)

Ikhile 
(2001)

3-ERM(1) 3-ERM(2) 3-MERM

160
320
640

2.18514(-01)
2.16581(-06)
1.96714(-11)

5.06153(-04)
2.16300(-06)
1.96536(-11)

2.18514(-01)
2.16581(-06)
1.96714(-11)

5.28030(-03)
7.00650(-05)
4.10783(-15)

3.14264(-05)
1.86383(-07)
2.77556(-15)

4.72343(-02)
6.49753(-07)
2.33147(-15)

2.00709(-04)
6.70213(-07)
2.88658(-15)
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unique for a chosen integer. The principal local truncation 
error term is also generalized as in (15). Absolute stability 
analysis showed that a p-MERM is L-stable. A p-MERM is also 
said to be consistent by Definition 3 and convergence for 
any order or accuracy. An example of MERM was introduced 
i.e. 3-MERM, given in (24).
	 We have chosen some test problems to evaluate the 
effectiveness of MERMs and other existing rational methods 
in terms of numerical accuracy. From the numerical 
experiments conducted, MERMs and ERMs from Teh and 
Yaacob (2013b) are found to have comparable accuracy and 
they generated more accurate numerical results compared 
with existing rational methods of Ikhile (2001), Lambert 
and Shaw (1965) and van Niekerk (1988, 1987) in solving 
non-stiff problem (Problem 1) and stiff problems (Problems 
2, 3 and 4). All these tests seem to indicate that MERMs are 
suitable and more reliable for general initial value problems 
whose solutions possess no singularities. However, MERMs 
are not suitable for problems whose solutions possess 
singularities, as was shown in Table 6. Finally, MERMs and 
ERMs of Teh and Yaacob (2013b) are comparable in terms 
of numerical accuracy. However, we suggest MERMs over 
ERMs for the numerical solution of first order initial value 
problem because MERMs are uniquely defined but ERMs are 
not uniquely defined as explained in the introduction.
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